Existence of periodic solutions with prescribed minimal period of a 2nth-order discrete system
نویسندگان
چکیده
منابع مشابه
Existence of periodic solutions for a 2nth-order difference equation involving p-Laplacian∗
By using the critical point theory, the existence of periodic solutions for a 2nth-order nonlinear difference equation containing both advance and retardation involving p-Laplacian is obtained. The main approaches used in our paper are variational techniques and the Saddle Point Theorem. The problem is to solve the existence of periodic solutions for a 2nth-order p-Laplacian difference equation...
متن کاملEXISTENCE OF PERIODIC SOLUTIONS FOR 2nTH-ORDER NONLINEAR p-LAPLACIAN DIFFERENCE EQUATIONS
By using the critical point theory, the existence of periodic solutions for 2nth-order nonlinear pLaplacian difference equations is obtained. The main approaches used in our paper are variational techniques and the Saddle Point theorem. The problem is to solve the existence of periodic solutions for 2nth-order p-Laplacian difference equations. The results obtained successfully generalize and co...
متن کاملExistence of Multiple Periodic Solutions for Second-order Discrete Hamiltonian Systems with Partially Periodic Potentials
In this article, we use critical point theory to obtain multiple periodic solutions for second-order discrete Hamiltonian systems, when the nonlinearity is partially periodic and its gradient is linearly and sublinearly bounded.
متن کاملMultiple Periodic Solutions for a Fourth-order Discrete Hamiltonian System
By means of a three critical points theorem proposed by Brezis and Nirenberg and a general version of Mountain Pass Theorem, we obtain some multiplicity results for periodic solutions of a fourth-order discrete Hamiltonian system ∆u(t− 2) +∇F (t, u(t)) = 0, for all t ∈ Z.
متن کاملOn the existence of minimal periodic solutions for a class of second-order Hamiltonian systems
Multiplicity results for an eigenvalue second-order Hamiltonian system are investigated. Using suitable critical points arguments, the existence of an exactly determined open interval of positive eigenvalues for which the system admits at least three distinct periodic solutions is established. Moreover, when the energy functional related to the Hamiltonian system is not coercive, an existence r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2019
ISSN: 2391-5455
DOI: 10.1515/math-2019-0102